Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Despite recent advances in phylogenomics, the early evolution of the largest bee family, Apidae, remains uncertain, hindering efforts to understand the history of Apidae and establish a robust comparative framework. Confirming the position of Anthophorinae—a diverse, globally distributed lineage of apid bees—has been particularly problematic, with the subfamily recovered in various conflicting positions, including as sister to all other Apidae or to the cleptoparasitic Nomadinae. We aimed to resolve relationships in Apidae and Anthophorinae by combining dense taxon sampling, with rigorous phylogenomic analysis of a dataset consisting of ultraconserved elements (UCEs) acquired from multiple sources, including low-coverage genomes. Across a diverse set of analyses, including both concatenation and species tree approaches, and numerous permutations designed to account for systematic biases, Anthophorinae was consistently recovered as the sister group to all remaining Apidae, with Nomadinae sister to (Apinae, [Xylocopinae, Eucerinae]). However, several alternative support metrics (concordance factors, quartet sampling, and gene genealogy interrogation) indicate that this result should be treated with caution. Within Anthophorinae, all genera were recovered as monophyletic, following synonymization of Varthemapistra with Habrophorula. Our results demonstrate the value of dense taxon sampling in bee phylogenomics research and how implementing diverse analytical strategies is important for fully evaluating results at difficult nodes.more » « less
-
Abstract Internal magnetic moments induced by magnetic dopants in MoS2monolayers are shown to serve as a new means to engineer valley Zeeman splitting (VZS). Specifically, successful synthesis of monolayer MoS2doped with the magnetic element Co is reported, and the magnitude of the valley splitting is engineered by manipulating the dopant concentration. Valley splittings of 3.9, 5.2, and 6.15 meV at 7 T in Co‐doped MoS2with Co concentrations of 0.8%, 1.7%, and 2.5%, respectively, are achieved as revealed by polarization‐resolved photoluminescence (PL) spectroscopy. Atomic‐resolution electron microscopy studies clearly identify the magnetic sites of Co substitution in the MoS2lattice, forming two distinct types of configurations, namely isolated single dopants and tridopant clusters. Density functional theory (DFT) and model calculations reveal that the observed enhanced VZS arises from an internal magnetic field induced by the tridopant clusters, which couples to the spin, atomic orbital, and valley magnetic moment of carriers from the conduction and valence bands. The present study demonstrates a new method to control the valley pseudospin via magnetic dopants in layered semiconducting materials, paving the way toward magneto‐optical and spintronic devices.more » « less
An official website of the United States government
